
N&SA-CR-200927

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-95-012

WVU-SRL-95-012

WVU-SCS-TR-95-32

CERC-TR-TM-95-007

/

The Specification-based Validation of Reliable Multicast
Protocol

by Yurtqing Wu

National Aeronautics and Space Administration

West Virginia University



The Specification-based Validation of

Reliable Multicast Protocol

Problem Report

Yunqing Wu

Submitted in partial fulfillment of the requirements

for the degree of Masters of Science

Department of Statistics and Computer Science

College of Arts and Sciences

West Virginia University

December, 1995



The Specification-based Validation of Reliable Multicast

Protocol

Abstract

Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally

ordered, reliable multicast service on top of unreliable IP multicasting. In this report, we develop

formal models for RMP using existing automated verification systems, and perform validation on

the formal RMP specificatioas. The validation analysis help identifies some minor specification

and design problems. We also use the formal models of RMP to generate a test suite for

conformance testing of the implementation. Throughout the process of RMP development, we

follow an iterative, interactive approach that emphasizes concurrent and parallel progress of the

implementation and verification processes. Through this approach, we incorporate formal

techniques into our development process, promote a common understanding for the protocol,

increase the reliability of our software, and maintain high fidelity between the specifications of

RMP and its implementation.



The Specification-based Validation of Reliable Multicast Protocol

Chapter 1 Introduction 2

Chapter 2 Reliable Multicast Protocol
2.1 Introduction to RMP

2.2 RMP operations

2.3 RMP specifications

4
4

5

7

Chapter 3 Validation Strategy and Process Model
3.1 Introduction to protocol verification

3.2 Validation Methods and Our Early Experience
3.3 Theorem Prover

3.4 Model Checkers

3.4.1 SMV

3.4.2 Murphi
3.4.3 SPIN tool

3.5 Our Verification Strategy and Process Model

11
11

13

14

17

17

18

20

21

Chapter 4 Formal Models of RMP
4.1 Single-Site Murphi Model

4.1.1 Some Simplifications

4.1.2 Minimal State Variables

4.1.3 State Transition Rules and Actions

4.1.4 Deadlock Avoidance

4.1.5 Verification Analysis and State Invariants

4.1.6 Example Problems Found

4.2 Multiple-Site SPIN Model

4.2.1 The Need for Multiple-Site Model

4.2.2 Some Simplifications
4.2.3 Results

4.2.4 Future Directions

25
25

25

27

28

29

32

34

37

37

38

40

43

Chapter 5 Test Generation
5.1 Conformance Testing and Testing Strategy

5.2 Test generation
5.3 Discussion

45
45

46

48

Chapter 6
Bibliography

Appendix

Conclusion 49
50

52



Introduction

Chapter 1 Introduction

Many software engineering papers that discuss software quality begin with a phrase like

"Software is always delivered late, over budget and fuU of errors." [GANN94] As software

becomes more sophisticated and complex, the task of producing correct, reliable and high-

standard software remains difficult. As computers become cheaper, smaller, and more

powerful, they become more pervasively spread out in modern society and play more

important roles in every aspect of our lives. Since nowadays, most computers are

interconnected by a network, a failure of software has far more reaching effect. It is clear

that the need for building correct software systems become more demanding.

Formal verification and validation are effective ways to improve the software quality.

However, the software industry is still reluctant to accept formal methods. Formal methods

arc perceived as impractical and not cost-vffective. The reasons for this perception could

be many-fold, but one obvious shortcoming of current practices is the separation of formal

verification and the implementation activities in most software development procvsses.

The formal methods arc employed to check the logical consistency and completeness of

designs and specifications, but this use has not been integrated into the entire life-cycle of

softwar¢ development. Formal models of a design arc often developed and then abandoned

in the later phases of development. When change occurs, we have to modify the code and

the formal models independently. This not only increases the cost of development, but also

deepen people's impressions about the limits of formal methods.



I

Introduction

In this report, we propose a new software development process that integrates formal

methods into the entire life cycle of the software development. In the requi_ment and

design phases, formal methods serve to model changes of software designs before the

implementation and provide checks for completeness and consistency. During the coding,

however, formal models can be refined along with the implementation of the specifications.

For instance, pragmatic issue such as performance may require design decisions to be

reconsidered. Any problem detected by formal models are fedback to designer and changes

are reflected in the specifications. In parallel, implementation can be modified at the early

stage. In the later life cycle, the same formal models can be used to generate a test suite for

functional testing of the implementation. Using this approach, we can achieve high fidelity

between the specifications, formal models, and the implementation. We have applied this

process in the development of a complex internet protocol, and our experience suggests that

this process helped us to improve the quality of our software. In our case, we used existing

automated verification tools to validate the design of the protocol. During the

implementation, we manipulate the models in order to analyze the protocol with respect to

thc desired properties. This analysis leads to discovery of some minor specification errors.

In the later phases, we used the same formal models to generate a test suite for conformance

testing of the protocol independendy.

In Chapter 2, we introduce the reliable multicast protocol and describe the method for

specifying the protocol operations. In Chapter 3, we review existing verification tools and

outline our validation strategies based on these tools. We present our Reliable Multicast

Protocol (RMP) formal models in Chapter 4. These formal models are based on different

level of abstraction and are developed for different verification tools. They serve to verify

different aspects of the specifications by using different levels of abstraction. In Chapter 5,

we discuss test generation using the formal models. We conclude with a short discussion

in Chapter 6.



Reliable Multicast Protocol

Chapter 2 Reliable Multicast Protocol

2.1 Introduction to RMP

Muldcasting is a technique for passing copies of a single packet to a subnet of all possible

destinations. The Reliable Multicast Protocol (RMP) is a communication protocol that

provides a totally ordered, reliable, atomic multicast service on top of an unreliable IP

multicast service. RMP is based on the set of reliable broadcast protocols presented by J.

M. Chang and N. F. Maxemchuk [CHAN84]. RMP is designed to be a transport level

protocol that provides reliable datagram delivery on top of a unicast or multicast unreliable

datagram service. The main goal is to provide high throughput for totally ordered messages

with low latency. It provides a transport mechanism by which a user can design and

implement fully distributed, fault-tolerant applications without the need to deal with the

lower level primitives of communication. Since RMP is aimed at providing a transport

level service, performance is a high priority. RMP provides the following features

[MON'IX)4]:

• High throughput for totally ordered messages with low latency

• Virtual Synchrony

• Support of process group models

• Efficient changes to the process group

• Scalability of process groups

• Flexibility of choice for resiliency and fault-tolerance level



Reliable Multicast Protocol

Here, by virtual synchrony, we mean that all sites will receive the same set of messages

before and after a group membership change. In this way, a distributed application can

execute as ff its communication was synchronous, when it is actually asynchronous. Our

implementation shows excellent scalability: its single data sender throughput stays

roughly constant as the number of destinations increases. _ also offers different quality

of services (QoS) levels: from unreliable, totally ordered, majority resilient to totally

resilient.

2.2 RMP operations

RMP is operated in two distinct modes: a normal operation mode and a recovery mode. In

the normal operation mode, RMP handles delivery of the data packets, token passing of the

token, acknowledgment of data packets and membership changes. The protocol provides

its primary services in the normal operation mode. The protocol switches from the normal

operation mode into the recovery mode whenever a site detects a failure and tries to recover

from the failure. After the new ring has been successfully reformed and synchronized to the

same point, the protocol transits into the normal operation mode once again.

To illusu'ate the RMP operations, let us see a simple example. Supposed that a RMP token

ring has been formed with three members: A, B and C. Suppose, the site B is the current

token site. Assume that Site A sends a message with sequence number 1 and that almost

simultaneously site C sends a message with sequence number 1 as well. Site B sees the

message from site A just before the message from site C and therefore orders the two

message by sending an ACK, ACK((A,1), (C,1), C,1). The ACK will be placed in the

imposed order with a timestamp of 1. The data messages will also be placed in the order

with timestamps of 2 and 3. These timestamps are implied because of the order they are

placed in within the ACK. The new token site is C. If site C does not see any more data

within a given lime period and it



ReliableMulticastProtocol

EVENT ORDER:

DATA(A,1)

DATA(C, I)
ACK((A, I),(C, I),C, I)

ACK(NUI.,L, A, I)

LCR(C< Remove, 2)

NL((C,2),B, 5)

Imposed Order.

I ACK((A,1), (C,1),C,I)

2 DATA(A, I)
3 DATA(C, 1)

4 ACK(NULL, A, 4)

5 NL((C,2), B, 5)

__(DATA(A,

(C,2), 1B),5)/_/ACK((A,1), (C, 1),

I Multicast [

Media [

C, 1)

Figure 1. RMP normal operation example

generatesatoken pass alarm and createaNULL ACK with timestamp 4 and pass thetoken

tositeA. Now suppose thatsitesC decidesthatitwants toremove itselffrom the ring.To

perform thisoperation,itsends an LCR (ListChange Request) thatcontains a sexluencc

number of 2,ordering itwith respectto the firstmessage from the siteC, and requesting

siteC tobe removed from thering.Because siteA isthecurrenttoken site,siteA generates

a new list,NL((C,2), B, 5),thatdoes not containsiteC initand sends the new listto the

ring.As a consequence of generatingthe new list,the token ispassed to siteB. The new

listisordcre,d withintheglobalorderingby being given atimestamp of 5.The new listthat

was generatedcorrespondswith theLCR sentfrom siteC with a sequence number of 2.

The above example explainshow theprotocoloperatesin the normal operationmode. If

any sitedetectsafailureduringthenormal operationmode, itwillmulticastarecovery start



II

ReliableMulticastProtocol

packet and all sites will switch into the recovery operations on receiving the recovery start

packet. The recovery process is a two step process. The first step is the generation and

synchronization of a valid new token list. The second step is the installation of this new

token list at each site. The fault-detecting site will act as a Reform Site and will send out

the Recovery Vote packet to each site member. All other sites will act as slaving sites for

the recovery process and respond to the Recovery Vote packet by sending their votes. Each

site's vote packet contains their highest delivered timestamp, called SynchTSP. The

Reform Site will keep a count of voters and send out new recovery packet ff some sites fail

to respond within a given time period. After all active site members send their votes and all

sites synchronize to a common SynchTSP, the Reform Site will create a valid New List

based on the collected votes. Upon receiving the New List packet, each slave site responds

with a ACKNL packet and commit the New List in the current token ring. If the Reform

Site receives all ACKNL packets from all members in the New List, the new ring has been

successfully formed and consequently sends out a NULL ACK packet to start the rotation

of token among the new token ring. During the process of the recovery, ff an error happens

or some sites fail to respond within certain time limit or within certain number of trials, the

recovery will be aborted and every site be forced into Recovery Abort state. In this state,

each site waits for a random time-out to start a new round of recovery operation. The

overall goal is to provide the best possible reformation of the token ring upon the failure of

certain sites. A more detailed description of the whole recovery operation can be found in

the RMP distribution documents.

2.3 RMP specifications

A complete specification of the protocol contains several parts. Among them are the

description of the service provided by the protocol, the assumptions about the environments

in which the protocol is executed, the vocabulary of messages used to implement the

protocol, the format of each message and the procedure rules guarding the consistency of



Reliable Multicast Protocol

message exchanges. The complete set of specifications can be found in the RMP

distribution files [MONT94]. The verification and validation of the protocol is mainly

concerned with the design and the validation of unambiguous sets of procedure rules

governing the exchange of messages and the operation of the protocol.

Most protocols can be easily described as state machines. Design criteria can also be

expressed in terms of desirable or undesirable protocol states and state transitions. A f'mite

state machine is usually specified in the form of a transition table, which contains the

current control state the machine is in, the condition on the environment of the machine

(input signals), the transition effect on the environment (output signals), and the new state.

The protocol is specified using a variant of SCR requirement specification table (HENS0]

that we call mode table. The mode table for RMP specifies the policy that a network site

used to respond to protocol events. Each operation is characterized by the current mode, the

current event, and the conditions satisfied by the current state, the transition taken by the

system, and the corresponding actions. In a complete RMP specifications, the system can

be in any of the following 12 states: {TS, NTS, GP, IT, JR, LR, NIR, SR, CNL, SV,

ACKNL, AR}. Each RMP site keeps its own three data structures: a Data Queue, an

Ordering Queue and an Event Queue. Data Queue is a FIFO queue used to hold data

packets as they arrive until they are delivered to application. The Ordering Queue is used

for ordering data packets based on their timestamps. Events are dequeued from the Event

Queues and serviced according to the specifications. There are 18 different events in RMP

specifications: (DATA, ACK, NACK, CONF, NMD, NMA, NL, LCR, RecStart, RecVote,

RecAbort, Failure, TPA, CTPA, RTA, MandLv, CommitNL, JoinReq}. The entire RMP

specification describes the transition and corresponding actions for a site in any of the 12

states under the 18 different events. Typically, a site's actions include placing the data

packet in the Data Queue, adding ACK packets in the Ordering Queue, updating the

Ordering Queue, passing the token and multicasting or unicasting certain packets. Here



Reliable Multicut Protocol

updating the Ordering Queue implies identifying the corresponding data packets from the

Data Queue and sending out NACK packets for missing data packets. Another important

action is passing the token. It is taken whenever a site is named as a token site and its

ordering queue is consistent. If the token can be successfully passed, an ACK will be

generated and Multicast to all members. Correspondingly, the token is passed to next site.

A positive acknowledgment policy governs the sending of some packets: the source site

will keep on retransmitting the packet until certain condition oceurs. The details of this

policy can be found in the RMP specifications.

Table 1: RMP Normal Operation Specifications

NTS

NTS

ACK

ACK

ACK

ACK

NTS

NTS

Not NamedTS

NamedTS

OrderQ Consistent
Token Passed

NamedTS

OrderQ Consistent
Token Not Passed

NamedTS

OrderQ Inconsistent

PT

TS

NTS

PT

Add ACK in OrderQ

Update OrderQ

Add ACK in OrderQ

Update OrderQ
PassToken

Add ACK in OrderQ

Update OrderQ
PassToken

Add ACK to OrderQ

Update OrderQ

Table 1 shows a part of mode table for the protocol operations. The site is in the NTS (Not

Token Site) state under the ACK event (the receipt of Acknowledgment packe0. If an ACK

event occurs and the site is not named as the next token site, the site will simply put ACK

packet into Ordering Queue, update the Ordering Queue and stays in NTS state. If ACK

9



Reliable Multicast Protocol

packet names the current site as the next tolmn site, the currant site will first put the packet

in the Ordering Queue, update the Ordering Queue, and try to pass the token to the next sit=.

If the token is successfully passed and the Ordering Queue is consistent up to the current

time stamp, the site transits to PT (Passing Tokensite) state. If the Ordering Queue is

consistent and the token has not been passed, it transits into TS (Token Site) state. Finally,

if the site is named as the next token site by the ACK packet and the Ordering Queue is not

consistent up to the current time stamp, it transits into GP (Getting Packets) state to wait

for more packets to fdl up the missing slots.

10



I

ValidationStrategyandProcessModel

Chapter 3 Validation Strategy and Process Model

3.1 Introduction to protocol verification

A well-structured protocol design should follow two common themes: simplicity and

modularity. Simplicity means that the protocol can be built using a small number of well-

designed and well-understood pieces. Modularity means that a complex function can be

built from smaller pieces that interact in a well-defined and simple fashion. Each smaller

piece is a light-weight protocol that can be separately developed, verified, implemented,

and maintained. Generally, a well-formed protocol should have the following

characteristics [HOLZ91]:

• not over-specified: it does not contain any unreachable or inexecutable code;

• not under-specified: it may not cause unspecified receptions during its execu-

tion;

• bounded: it can not overflow known system limits;

• self-stabilizing: if a transient error arbitrarily changes the protocol state, a self-

stabilizing protocol always returns to a desirable state within a finite number of

transitions, and resume normal operations;

• self.adapting: it can adapt, for instance, the rate at which data are sent to the rate

at which the data links can transfer them, and to the rate at which the receiver can

consume them;

• robust: it must be prepared to deal appropriately with every feasible action and

with every possible sequence of actions under all possible conditions. The protocol

11



II

Validation Strategy and Process Model

should make only minimal assumptions about ks environment to avoid dependen-

cies on particular features that could change;

• consistent: three consistency standards include: deadlock-flee -- no states in

which no further protocol execution is possible; livelock-free-- infinite looping

without ever making effective progress; improper terminations -- the completion

of a protocol execution without satisfying the proper termination condition.

Since RMP is a complicated protocol, the validation of the protocol design is important to

increase confidence in its reliability and safety during operation. To verify that RMP

specifications have all of the above characteristics is difficult and may even be impossible.

The design of RMP includes many features that direcdy relate to the above requirements.

Many of these features are borrowed from the experience in implement/ng TCP. For

example, the recovery mode is designed to satisfy the requirement of self-stabilization.

RMP time-out and retransmission mechanism applies serf-adapting techniques. Since our

concentration is on the RMP operation specifications, the main emphasis of our validation

is on the completeness and consistency of RMP specifications, i.e. proving that the protocol

is well-specified and consistent.

Before we get into the details of our formal analysis, it is necessary for us to clarify the

meaning of verification and validation. The conventional meaning of these two words are

best described by:

Verification: Are we building the product right?

Validation: Are we building the right product7

In other words, the verification is generally referred to the activities of certifying that a

product meets its specifications, whereas the validation is referred to confmning that the

product satisfies the original user requirement. But in the literature, these two words axe

12



Validation Strategy and Process Model

often used interchangeable. For example, for all model checkers we have used, most of

them use verification to describe the formal analysis activities, but one tool uses validation

exclusively for data communication protocols [HOLZ91]. Actually these tools are

basically performing the same activities. Since in this report, we have used several different

tools to perform our formal analysis, and different tools have different convention in using

these two words, we do not make specific distinction for them. The overall goal of this

report is to validate the formal specifications of RMP, i.e. to prove if the specifications

possess the desired properties. To achieve this goal, we use some automated verification or

validation tools. So in the context of specific tool, we will follow the convention of the tool

to use verification or validation. In the end, we use the formal models to generate a test suite

for implementation conformance testing. This testing is strictly a verification activity.

3.2 Validation Methods and Our Early Experience

The current practice of protocol validation can be dividend into two types: mathematical

proofs and model checkers. The mathematical proof approach involves specifying the

protocol assumptions as axioms and proving the protocol properties as a sequence of

lemmas and theorems. It may be a pure mathematical proof or the proof based on the use

of some theorem provers. Another approach is based on the use of model checkers. In this

case, protocol operations are specified in the model checker's formal specification

languages and used as a input to the verification systems. Verifiers then perform an

exhaustive search over all possible state spaces according to the specified protocol

operations. The protocol properties are verified against all possible states and paths.

Currendy there are severaltheorem provers and model checkers availablefor free.The

advantagesof themathematicalproof approaches includeitsrigorous,precisederivationof

protocol properties,and independence of lower-level implementation. The main

disadvantages of mathematical approaches includes the high-level abstractionthatis

13



ValidationStrategyandProcessModel

separated from the implementation. The lack of traceability between the theorems and

implementation makes it very difficult to fred direct correspondence between them. For the

model checkers, it is more straight forward to translate the protocol operations into the

system-specific specification language and the proven properties can be directly related the

design specification and implementation.

In our fn'st attempt to formally verify the RMP, we used the SMV model checker

[BURC90]. Some initial attempts reveal some limits on this model checker, including the

state explosion problem and the lack of high level data-su'ucture support. We then decided

to use the PVS [RUSH93]. There is a rigorous mathematical proof of the Token Ring

Protocol [CHAN84], on which RMP is loosely based. We then switched our concentration

on the theorem prover approach and tried to replicate the theorem proof by PVS. Because

PVS is a mechanized system, most proof steps must be input by the interactive user. We

didn't pursue along this approach too far, since it is not tractable to implementation. It is

until we found other two model checkers, i.e. Murphi and SPIN, we made some solid

progress in constructing the formal models of RMP. Through this early trial-and-error

approach, we learned that it is very important to construct the formal models at an

appropriate abstract level compatible to the underlying tool's specification language. In the

following sections, we describe the properties of these tools and our experience with them.

We feel that these experiences are very important for directing us to our current success.

Finally we outline our verification strategy and the development process model based on

these available tools.

3.3 Theorem Prover

The mathematical proof approach for formal protocol verification involves specifying the

protocol assumptions as axioms and proving the protocol properties as a sequence of

lemmas and theorems. It may be a pure mathematical proof such as the verification of the

14



Validation Strategy and Process Model

Token Ring Protocol [YODA92] or the proof based on the use of some theorem provers

[DREX92]. A typical and popular theorem prover system we have come across and used

in our project is PVS -- Prototype Verification System from Computer Science Laboratory,

SRI International, Stanford University. It is a prototype for a system specification and

verification based on higher-order logic. It consists of a specification language integrated

with support tools and a theorem prover. PVS tries to provide the mechanization needed to

apply formal methods both rigorously and productively. The primary purpose of PVS is to

provide formal support for conceptualizing and debugging in the early stages of the life-

styles of the design of a hardware or software system, when the executable version of the

system is still not available. PVS has the following features [RUSH93]:

• Early Stage Verification: It is intended to be useful for early life-style applica-

tion of formal methods, instead of program verification of a program in some con-

crete programming language satisfied the specification. It is desigued to help in

detection of design errors as well as in the confirmation of"correcmess";

• Rich Type System: Compared with some similar systems, it has very rich type-

system and correspondingly rigorous typechecking. A great deal of specification

can be embedded in PVS types, and typechecking can generate proof obligations

that amount to a very strong consistency check on some aspects of the specifica-

tion. It combines a rich expressive specification language and an effective theorem

prover,

• Interactive Proof and Automation: PVS provides a good combination of direct

control by the user for the higher levels of proof development, and the powerful

automation for the lower proofs. It proves the theorem through the process of chal-

lenging specifications. At the high level proof, user can easily input the prove com-

mands, while most lower proofs can be carried out by the powerful theorem

prover;,

• Good Conservative Extension: It helps eliminate certain kinds of errors by pro-

15



I I

Validation Strategy and Process Model

viding very rich mechanism for conservative exmnsion. PVS provides both the

freedom of axiomatic specification, and the safety of a generous collection of deft-

nitional and constructive forms, so that users may choose the style of specification

most appropriate to their problems.

PVS has been used to verify several systems, including fault-tolerating protocol, airline-

reservation system, selected aspects of the control software for NASA's space shuttle

project. It runs on workstation with mediate system resources requirement of disk space

and memory space(30 MB hard disk + 20MB swapping space, > 12 MB memory). PVS is

implemented in Common Lisp. All versions of PVS require Gnu Emacs as its user

interface. Latex _nd appropriate viewer are needed to support certain optional feature of

PVS, such as the pretty typing of the proof.

RMP is based on Chang's Token Ring Protocol and there is a mathematical proof on the

protocol based on the use of the modal primitive rccursive functions [YODA92]. Our fu'st

effort was to replicate the proof by using Paves since, time operators and sequence and

behavior types [RUSH93]. These constructed types can be used directly to specify RMP

properties. We made some progress in replicating the proof, yet we didn't pursue our

verification of the protocol design using PVS. First, the learning curve of PVS is very steep

and PVS proof are still mostly mechanic. Even the proof of some simple theorems can be

quite involved and requires a lot user interactive input. Secondly, we feel that even if we

can formally prove some theorems with the protocol, it is difficult to relate the theorems

with the actual implementation. Since mathematical theorems proved by PVS are generally

at the very high abstract level and there is still significant gap between the implementation

and the theorems. As our primary goal was to integrate formal methods into the software

development process and to increase the quality and reliability of the software, we chose to

pursue our verification based on analysis by model checkers whose state-based analysis can

16



I

Validation Strategy and Process Model

more easily be compare with tests executed on the implementation. A recent report shows

a new implementation of theorem prover which has integrated the model checkers into the

prover system to allow more powerful automatic proof through model checker [RAJA95].

This new system may help to relieve heavy user interaction and lead to shorter proofs.

3.4 Model Checkers

Model checkers use a high-levelformal specificationas language inputand generatecode

toperform an exhaustivesearchover allpossiblestatesinorder toverifypropertiesof the

specifiedsystem.In an efforttofacilitatethe automaticverificationofhigh-leveldesignfor

hardware and software systems, severaltoolshave been developed and used in many

applications. We used three tools in the process of verifying RMP: SMV-Symbolic Model

Verifier from Carnegie-Mellon University [BURC90]; MURPHI from Stanford University

[MELT93] and SPIN from AT&T Bell Laboratories [HOLZ91, HOLZ94]. These tools

have their own features and users can choose appropriate tool to perform different

verification tasks at different levels. In the following subsections, we describe these three

tools and our experience with them.

3.4.1 SMV

SMV is a tool for checking finite state systems, from completely synchronous to

completely asynchronous, against the system specification expressed in the temporal logic

CTL [BURC90]. It allows for specifications of non-determinism and concurrency in its

model. SMV attempts to directly model system behavior by specifying state transitions

explicitly for each state variable, expressed as procedures of variable assignments. SMV

has been effectively used in some hardware design verification. It supports rich temporal

logic specifications and an incremental, modular approach to protocol specification and

verification.

17



Validation Strategy and Process Model

We have constructed several simple formal RMP models using SMV. Since our t'u'st

attempt involved too much protocol implementation details, we faced severe difficulties in

extending the simple models to include the full protocol specifications. In addition, when

the model is incrementally built, we quickly run into the problem of state explosion. There

is simply no enough memory to perform exhaustive state space search and extending the

running lime does not help. One execution of a SMV mode of RMP was aborted after about

ten days.

3.4.2 Murphi

The Murphi Verification System consists of the Murphi compiler and the Murphi

description language. The Murphi Compiler generates a special purpo_ verifier in C++

from a Murphi description. After further compiling by C++ compiler, the special purpose

verifier can be used to check the properties of the system, such as error assertion, invariant

and deadlock. The Murphi description language is a high-level description language for

finite-state asynchronous concurrent systems. It supports user-defined data types,

procedures, and parameterization of descriptions. A complete Murphi description consists

of declaration of constants, types, global variables, and procedures; a collection of

transition rules; a description of the initial states; and a set of invariants.

In Murphi, a state is an assignment of values to all of the global variables of the description.

The verifier starts execution in the specified start state. It then applies all executable rules

to this state to generate new states. All visited states and unexplored new states are stored

in two state queues. Whenever a next state is generated by applying a rule to a unexplored

state, it is compared with all visited states to see ff it a new state. The execution stops ff an

error occurs or ff all executable rules have been applied to all states and no new state can

be generated.

18



ValidationStrategyand ProcessModel

Because Murphi choose the next executable rule arbitrarily from all applicable rules, the

Murphi descriptions arc non-deterministic. So the correct Murphi program must do the

right thing no matter which rules are chosen. This execution model is good for describing

asynchronous systems where different processes run at arbitrary speed which interact via

shared variables. Message passing can be modelled by reading from and writing to a buffer

variableor array.

The Murphi verification system can be run in two different modes: simulator mode or

verifier mode. In the simulator mode, the simulator chooses among the rules arbitrarily to

get the next state. It will run forever or until an error occurs. On the other hand, the verifier

considers the results for ALL possible choice either by breadth-first search or depth-first

search procedures. It stores all states in a large hash tables so that it can cut off the search

whenever it encounters a state it has seen before. Explicit "assert" and "error" statements

in the Murphi model description can be checked in each step. If one of these conditions

occurs, the verifier halts and print a diagnostic consisting of a reconstructed sequence of

states that leads from the initial state to the error state. All invariants expressions are

checked along all explored paths. Initially, Murphi was designed for hardware design

verification. It has been successfully used to verify some hardware design as well as some

protocol design, including the design of large cache-coherence protocol (DASH)

[LENO92].

Our first trial on Murphi has the same problem as we had on SMV. The reason is that we

tried to construct a model which involves too much detailed on the protocol operations.

When we tried to extend out simple model, we faced the same state explosion problem.

Only after we decided to construct our model at a much higher level did we start to get some

real progress in the Murphi model. Our later experience shows that Murphi is a good

verification tool at this level, because it offers the following characteristics:

19



Validation Strategy and Process Model

• Asynchronous State-Machine: Murphi is designed for the verification of asyn-

chronous state-machine;

• One-to-One Rule Translation: Our protocolspecifications can be easily transfer

into Murphi rule specification, which help us to keep high fidelity between our

models and the protocol specifications;

• Invariant and Assertion: Murphi verification system has rich supports for tem-

poral logic invariant specification and insertions of assertion in the specification. It

also support fairness properties specification along the exploration path.

These characteristics are very helpful to our protocol verification. Therefore, we have

performed most of our verification analysis based on our Murphi models of RMP.

3.4.3 SPIN tool

SPIN is a tool for analyzing the logical consistency and general verification for proving

correctness properties of distributed or concurrent systems, especially for data

communication protocols. The system is described in a modeling language called

PROMELA. The language allows for the dynamic creation of concurrent processes.

Communication via message channels can be defined to be synchronous (i.e. rendez-vous),

or asynchronous (i.e. buffered). The protocol system is described as a group of processes

running at their own rate, exchanging message through communication channels. Each

process can make state transition based on the state variable values and the channel event

and produce output to other processes' communication channels.

Given a model system specified in PROMELA, SPIN can either perform random

simuladons of the systems's execution or it can generate a C program that performs a fast

exhaustive validation of the system state space. During simulations and validations, SPIN

checks for the absence of deadlocks, unspecified receptions, and inexecutable code. The

2O



Validation Strategy and Process Model

validator can also be used to verify the correctness of system invariants specified as never

clauses, and it can fred non-progress execution cycles.

Compared with the Murphi tool, SPIN has several additional advantages. First, SPIN is

especially designed for verification of data communication protocols, and it currently has

over 1000 active users in both academic and industrial world. Secondly, it has the explicit

support for the communication channels between processes, which is good for instantiating

the detailed communication mechanism between RMP processes. Thirdly, SPIN has

adopted some advanced algorithms to address the state explosion problem. Users can use

either state reduction algorithm or bit-state reduction to perform best possible search in the

case of state explosion. After we successfully constructed an abstract formal model using

Murphi, we switched to SPIN to include the detailed communication mechanisms among

different processes and verify the protocol at lower level of details than the Murphi model.

3.5 Our Verification Strategy and Process Model

From the above review, we can conclude that theorem provers usually work on a higher

level of abstraction than the model checkers. From PVS, Murphi, to SPIN, they can

simulate protocol operation details in a increased order. In our RMP development project,

our main goal is to increase the quality and reliability of the RMP implementation. As there

is already rigorous mathematical proof of the basic token ring algorithm, it is more

appropriate for us to use model checkers to verify the completeness and consistency of the

protocol specifications. At this point, it is very critical to choose appropriate level of

abstraction to be simulated by the model checkers. Our early trials on these tools gave us

valuable experience in choosing a suitable abstraction level. Our initial attempts on all of

these tools involved too much operation details, perhaps influenced by the RMP

implementation. Only after we determined to use a higher-level abstraction to specify and

simulate the RMP operations, we started to make some real progress in constructing formal

21



I

ValidationStrategyandProcessModel

models. While SMV does not support complex data structure, our fh'st model involved

some lower level simulation of the protocol operations, which make it hard to build a

complete model. After that, we decided to use the Murphi tool to build a more abstract

formal model of RMP. At this level, we do not concern about the details of the underlying

data structures. Instead we used non-deterministic algorithms to allow for all possible

transitions. In this way, we built our fh'st Murphi model of RMP. Based on the success of

the first model, we further construct more elaborated interaction model involving lower

level data structures using SPIN's communication channels.

In summary, based on the above existing tools, the event-driven design of RMP protocol

ar.d the mode table specification of RMP, we will perform the verification and validation

in the following two steps:

• Single Site Murphi Model: we use the Murphi tool to construct a single site

model directly based on the RMP specifications. Each rule in this model will

directly come from the specifications. In this relative high-level model, we are not

concerned about how thoseeventsare generatedand how thissite'stransitionis

going to affectothersites.We arcmainly concerned about the completeness and

consistencyof theRMP specificationof a singlesite'sresponse toarbitraryevents

under allpossiblestates.Essentially,we ignorethe actionpartof the specification

but only the transitionpart.We only examine a site'sbehavior under arbitrary

sequence of events;

•Multiple SiteSPIN Model: we use theSPIN tooltoconstructa multiple-site

interactionmodel, which willactuallymodel interactionand event generationin

the RMP processes.The explicitcommunication channel featurein SPIN willbe

used to simulatetheData Queue, Event Queue and theOrdering Queue inRMP.

Thereforethisisa much low levelmodel than inthe Murphi model. The state

22



Validation Strategy and Process Model

explosion problem arising from the complex interaction between RMP processes

will be handled by the bit-state reduction algorithm.

Since RMP operates in two distinct modes, i.¢. the normal operation mode and the recovery

mode, it is appropriate for us to verify two modes separately. In this way, the essential

features of RMP arc preserved while the possible state explosion problem is avoided. This

approach sig_ificandy reduces the state space as compared to the combined model, while

still maintaining the fidelity. To increase the fidelity between the implementation and the

specifications, these formal models developed are used to generate a test suite for

implementation's conformance testing. So the correct verified protocol behaviors are tested

on the implementation along all possible paths. Conscquendy the formal models arc fully

integratedintothedevelopme_,tlife-style.

In the entireprocess of the protocolverificationand testing,we followed a iteradveand

interactivemodel of development (Fig.2).From thefirstoutlineof RMP specification,we

startbuildingthe formal models using differenttoolsbased on the formal specifications.

These models arc constructed in a incremental fashion,i.e.from the simplest normal

operationmodel withoutdataloss,toa fullyoperationalmodel. Any changes inthedesign

and specificationwillresultin themodificationof the formal models. Any errorsdetected

in the formal models are fedback to the protocol designers and may result in changes in the

specifications. At the same time, implementation activities can progress in parallel based

on the specifications. Any changes in the specifications can be reflected in the

implementation in the early stage. The formal models also provide a good testbed for

alternative designs. After the formal models are fully refined and the implementation is

finished, the formal models are used to generate test cases. These tests are executed the

implementation m provide feedback to the specifications. Since the specifications, the

formal models and the implementation interact constandy, a good traceability for software

changes can be achieved. Conscqucndy through these mutual interaction among the

23



Validation Strategy and Process Model

Formal

Formal Models

Specification

Test Generation

sting

v Implementation

Figure 2. Our Software Development Process Model

specifications, the formal models, and the implementation, the high fidelity between the

specificationand the implementation can bc achieved and the reliabilityof the software

increases.We feelthatthisdevelopment approach incorporatesthe formal models intothe

whole development process and improve the software process.

24



FormalModelsof RMP

Chapter 4 Formal Models of RMP

4.1 The Single-Site Murphi Model

As stated in the previous chapter, we fast build a single-site model using the Murphi tool.

This single site model simulates a single RMP site's behavior under an arbitrary sequence

of events. To construct the model, we simplify and then extract the minimal state variables

from the specifications. Secondly, state wansidon rules can be built using the transitions in

the RMP specifications. Finally, we use Murphi tool to perform various verification and

analysis on this formal model, such as deadlock analysis, state assertions and system

invariants.

4.1.1 Some Simplifications

RMP

Process

Response

A

Events

Network

Event Generator

Figure 3. Murphi Model of RMP

For the single site model, we do not consider the details of the underlying data structures

of RMP and any interaction between RMP processes. We simply assume that there is a

network event generator which generates all possible RMP events in an arbitrary sequence

25



Formal ModeJs of RMP

(Fig. 3). The model simulates the behavior of a RMP site under this event sequence. This

assumption greatly simplifies our model while still provides valuable information on the

completeness and consistency of the transitions in the _ specifications.

Let us see some of the consequence of this simplifications. First, because we ignore the

interaction between RMP processes and all events are generated by a network event

generator, we need not consider those actions specified in the RMP specifications. Those

actions only affect other sites, such as the actions of multicast or unlcast packets to other

sites. Second, since there is no concept of data sequence number, timcstamp, Data Queue

or Ordering Queue, all necessary conditions in the specifications arc simulated by

numerated variables and governed by non-deterministic transitions and fairness rules. For

example, the implementation of an Ordering Queue includes a sequence of slots ordered by

timestamps. In this simplified model, we do not simulate this data structure directly.

Instead, as the ordering queue can only be in CONSISTENT state or INCONSISTENT

state, we simply use a scalar variable with two possible values to represent the state of

Ordering Queue. Here a CONSISTENT state means that the site has all slots filled up in its

Ordering Queue up to the last time stamp of the last ACK or NL packet. Since we do not

have the concept of timestamp at this level of abstraction in the model, we can not include

detailed fields within data packets and Ordering Queue. Rather, upon receipt of specified

event, this site's state variable is set non-deterministically to either CONSISTENT state or

INCONSISTENT state. In this way, the model is guaranteed to simulate all possible

behaviors of the single site under arbitrary events. Third, the system response to certain

events have the same effect on state variables, as we do not consider the underlying

implementation details. For simplicity, we will simply ignore those events and replace

them with the similar events that have the same effect on the state variables. For example,

the model will react in the same manner to member data packets and non-member data

packets. The model keeps the data event and ignore the non-member data event.

26



Formal Models of RMP

4.1.2 Minimal State Variables

To represent an RMP state, we have to decide which minimal set of variables can

sufficiently and accurately represent a site's state behavior. Because we do not explicitly

simulate the Data Queue and Ordering Queue, we use some numvrated variables to

simulate all state variables. We also have to k_p the stat_ variables at minimum to avoid

possible state explosion problem. Upon examining the RMP specifications, we found that

the following variables arc necessary to honesdy represent the specifications:

a. STATE: a variable that represents the operation mode of the RMP site, which

could only be {NTS (Not Token Sit_), TS (Token Site), PT (Passing Tokensit_),

GP (Getting Packets), NIR (Not In Ring), 3K (Joining Ring), LR (Leaving Ring),

SR (Start Recovery), CNL (Create New List), SV (Sent Vote), ANL (Acked New

List), AR (Abort Recovery)}; ....

b. OQ: a scalar variable to represent the star_ of the site's Ordering Queue, which

can only be { CSI (Consistent), INCSI (Inconsistent)};

c. TKSTATE: a variable to indicate the token-pass status of a single sit_. For a

named next token site or the current token site, the site will perform different tran-

sitions based on the token-pass status, i.e., ff the token is successfully passed, it

will transit to PT, or else stay in the TS. This variable can only assume two possi-

ble values: {TKP (ToKen Passed), TKUP (ToKen UnPassed)};

d. EXIT and TIME: these two variables arc used for membership change opera-

dons only. EXIT variable is used to check if the required exit condition is sadsfied

before the sit_ can actually leave the token ring. The EXIT variable can only

assume the values of {YES, NO}. The TIME variable is used to represent the rela-

tive value of timestamps of different packets, which can only be { GT (Greater

Than), LE (Less or Equal)).

27



I|

FormalModelsof RMP

Besides these state variables, we also need a way to get additional information from the

data packets. For example, ff a site receives an ACK packet, it will react differently based

on whether the site is named as the next token site or not. Because we do not simulate the

fields within data packets, we need to include this additional information in our model. For

the normal operation model, we def'me a structure with two fields in every data packets: one

field called PACKET_TYPE to hold the information about the type of the packet; another

field called PACKET_STATE to hold additional information on packets, such as whether

named this site as the next token site or not. The first field can be any of 13 RMP event

types, and the second field can be {NTS (Named TokenSite), NNTS (Not Named

TokenSite) }.

4.1.3 State Transition Rules and Actions

Even though this single site model is a high-level abstract model, we want to keep high-

fidelity with the specifications as close as possible. Based on the above simplifications, we

achieve this high-fidelity by directly translating each specified transition in the

specifications into a Murphi rule in the model. Each transition in the specifications is

translated into a Murphi transition. In the RMP specifications, however, ff the response to

an event is not specified, by default, it is supposed to be ignored by the site. In Murphi, we

have to explicidy specify this ignorance rule. Otherwise, a deadlock state may occur (see

next section).

For the specified actions associated with each transition, we first cross out those actions that

only affect other sites, such as multicast or unicast of ceratin packets. And then we examine

those actions which will actually change a site's state variables. These actions include: (a)

updating Ordering Queue; (b) passing the token. We create two procedures and use the non-

deterministic algorithm to simulate the possible change of the state variables:

(a) UpdateOrderingQueue -- whenever a site receives an ACK or NL packet, it puts

28



FormalModelsof RMP

the packet in the Ordering Queue and update Ordering Queue. This action may non-

deterministically change the value of OQ variable;

(b) PassToken -- whenever a site is in token site (TS) or named as the next token site,

upon receiving a data packet, it will try to pass the token by calling the procedure

PassToken, which may change the value of state variable TKSTATE. Depending on

whether the token is successfully passed, the site will take different transitions.

As stated in the RMP specifications, all actions specified axe taken before the transition. To

make our model follow this specification, we associate above actions with the event

generator. All actions are taken immediately after the corresponding event is generated.

Then transition rule based on the current state variables are taken. In this way, our model

works in the exact same way as specified. Besides the state transition rules, we also need

rules for event generation. Our first model was restricted to certain sequence of events.

Later analysis shows that this restriction unnecessarily complicates the event generator and

may result in deadlock. Consequently, we remove this constraint and generate all events in

random order.

4.1.4 Deadlock Avoidance

Following the above simplifications and abstraction, it is now swaightforward to translate

the RMP specifications into the corresponding Murphi model. But when we first run the

code generated by the Murphi compiler, it always ran into the deadlock state -- a state

where the system does not know what to do next except staying in the same state. Further

analysis shows that this does not means that there is a deadlock state in the specifications.

Rather, most of time we found that the model does not honestly represent the specified

behavior. The analysis on these deadlock states involves a lot of adjustment and free-tuning

of the model. It is also the first step that we get some feedbacks from the model and start

29



Formal ModeLs of RMP

the iterative interaction with the protocol designers and implementators. We took the

following approaches to remove pessimistic deadlock states or perform some analysis on

the potential problems in the design:

(a) Event Sequence: Initially, the network event generator produces events according to

some specified sequence. The idea behind that is to simulate the most likely sequences of

events first. As a result of this specified event sequence, the system may easily lead into a

state where the next possible events arc not defined, thus in a deadlock state. Later the

model is modified to allow arbitrary sequences of events to be generated, i.e. the event after

an ACK event could be any event. While it is good to simulate the most likely sequence of

event_ f'L_Stand check a site's response under the normal sequence of events, we feel that it

is the value and the advantage of the formal methods to verify that the specified system has

deadlock-free state under arbitrary event sequence. By including all possible sequences of

all events, we are able to show the completeness of the specifications;

(b) Alternative Operation Between Two Modes: Originally, the model operates in a

completely non-deterministic way. The model simply picks any executable rules and

transits into next new state. In this way, the system may generate several events without

allowing any site response. This is one possible way to simulate the packet loss over the

network, but it also easily leads into a deadlock state. Since at this abstract level, there is

no explicit way to simulate the NACK mechanism in case of data packet loss and we do

simulate the event queue (No event buffering), all data loss are simulated by getting the

corresponding data packets later by the site and bringing the site into CONSISTENT

Ordering Queue state. Therefore we modify the model to operate alternatively in two

modes: event generation mode and site response mode. In event generation mode, a new

event is randomly generated. Since all actions specified are taken before actually transiting

to next state, the corresponding actions are also taken as the next event is generated. In the

3O



Formal Models of RMP

site response mode, the RMP site responds to the event based on the current values of the

state variables. In this way, the model works alternatively in the event generadon mode and

the site response mode;

(c) Event Ignorance Rules: In the RMP specification, all events not specified are

supposed to be ignored by the site. But in the Murphi model, the site response to ALL

events must be explicitly specified, even for those events which are supposed to be silently

ignored. The corresponding "ignore" rule must also be explicitly added into the model to

avoid unknown response deadlock;

(d) Fairness Properties: After all above precautions have been taken, the system may still

get into deadlock state. The key of this problem lies in the fairness properties in the model.

In the actual operation of the protocol, the site will stay most of its time in the normal

operation mode, where the packet loss seldom happens and all lost packets will soon be

retransmitted by the NACK mechanism. But in the verification system, the system

performs an exhaustive search. If there is any possible path which will lead to deadlock or

inconsistent state, it will find it and stay there forever. For example, if a site loses a data

packet and gets into INCONSISTENT state by an ACK event, the lost packet is supposed

to be retransmitted by NACK mechanism. Without further specification, the site may stay

in the inconsistent state forever, eventually violating the system invariant and blocking the

token rotation. The way out is to use the fairness specification to further specify that certain

events should happen infinitely often. For example, the lost data packets will eventually be

rewansmitted and bringing the site back to CONSISTENT state again. Otherwise the site

would have to fail and nor further operation is possible. The fairness specifications play a

important role in this single site model, since we do not have a way to explicitly simulate

the NACK mechanism and timestamp.

During the evolutionary processing of formal methods, we gradually refined our model to

31



Formal Models of RMP

a state that honestly represents the specified protocol behaviors and runs deadlock-free. We

feel that it is this part of model tuning process that helps us verify our protocol. Typically,

during the initial debugging and adjustment phase, the Murphi model is run under the

simulation mode so that any deadlock can be easily caught by the simulator and

corresponding change can be made easily. For instance, if the model runs into a deadlock

state and the analysis shows that the system is in a state where the event response is not

specified. By default, the event is supposed to be ignored by the site. At this point, the

question goes back to the designers to see if the site is inde_ supposed to ignore the event.

In some cases, the specifications must be modified to achieve the desired behavior.

Sometimes, some adjustments are required to make the model correctly simulate the

specified behavior. Through this iterative feedback from the formal models, we promote a

common understanding of the protocol and increase our confidence on the design and

specifications of RMP.

4.1.5 Verification Analysis and State Invarlants

The Murphi verification system can cheek other properties beside the deadlocks. To make

sure that the system has certain properties in certain states, we can add explicit "assert" and

"error" statements within a rule. If an error condition occurs, the verifier halts and prints a

diagnostic consisting of a reconstructed sequence of states that leads from the initial state

to the error state. A more general way is to add system invariants into the model so that

these invariants are checked against all explored paths. If the verifier finds that one of the

invariants is false, it will print the detailed path from the initial state to the violating state.

These invariants can be specified in a temporal logic statements. Generally, system

invariants are the best way to verify protocol properties. But the difficulty is that most of

time these invariants are far from trivial. To correctly specify a protocol invariant requires

a thorough understanding of the protocol. Here we give two examples of RMP invariants.

The first invariant is called "TS always CSF' -- if a site is a token site, then its Ordering

32



Formal Modolo of RMP

Queue must be always CONSISTENT. By the definition of the token site, this property

must be true. If a site's Ordering Queue is INCONSISTENT, it should not become a token

site. Rather, it should f'LrStget into GP state and wait until the Ordering Queue becomes

CONSISTENT to transit into TS. After a site becomes token site, there should be no events

with higher timestamp which will put the site into INCONSISTENT state, because the only

packet which has timestamp greater than the last fimestamp is supposed to be generated by

the current token site. Another invariant is called "GP & INCSI always TKUP" -- if a site

is in getting packet state and its Ordering Queue is INCONSISTENT, it must not have

passed its token. Only when its Ordering Queue is CONSISTENT, it is possible for the site

to pass token to the next site. These two invariants along with other invariants have been

specified in the model and are verified to be true in our model.

After continuous manipulation of the model's fairness properties, we found that the

minimum fairness properties required to guarantee all system invariants to be true are: (a)

the token will eventually be passed by a named token site and; (b) a inconsistent Ordering

Queue will eventually become consistent through the NACK mechanism (not simulated by

the single site model). Under these fairness conditions, all system invariants hold. At this

moment, we feel satisfied with the model, since these fairness conditions are just the

minimum conditions in the common sense for the protocol to operate continuously without

getting into recovery state. Of course, more detailed and elaborate invariants will lead to

more detailed check on the system properties. It is worthwhile to mention that besides the

use for exhaustive search, the model can also be used to examine the system behavior under

a specific sequence of events to test an alternative design. We will talk about this later in

the conformanc_ testing part.

The above discussion is restricted to the normal operation model. The recovery model can

be consorted in a similar way. For state variables, we need another variable ALL to

33



Formal Models of RMP

represent vote and ack information for Recoverability or Aclc_cwList. Besides, we also

need mort fields to represent information in a data packet:

• INFO-- if the packet information matches with the site's information;

• LIST-- if the new list is valid or invalid (according to the pre-spccified fault-

resilient criteria);

• RFM -- if the list is the reformation list or not.

Most of these variable am binary variables. In this way, a recovery model is constructed

and used to perform verification analysis. When fairness conditions are minimized, we

found that for most recovery states thcre is only one way to recover successful. This strict

requirement is compensated by the RMP's flexible design to allow for the creation of a

single site's own group.

4.1.6 Example Problems Found

Based on the above validationanalysis,we have been able to identifysome potential

problem inthe RMP specifications.These problems am reportedtotheprotocoldesigners

and result in revised and expanded specifications of RMP. Here we list some of problems

identifiedby the formal models:

1. Implicit Passing of Token

In the original token ring protocol, the token is explicitly passed by a transition from TS

statetoPT state.In the initialRMP designphase, the token was alsoconsidered as passed

explicitlythrough the token sitestate.To kccp the token rotatingamong the token ring

members, each sitemust be inthetoken sitestateinfinitelyoften.In our formal models, we

found thisinvariantisfalseunder the current specificationsof RMP. Further analysis

shows thatinthecurrentspecificationsof RMP, thetoken can bc passed implicitly,i.e.the

tokencan bc passed by a siteinNTS orGP stateimplicitlywithout explicitlytransitinginto

34



I

Formal Models of RMP

TS state. To check the token passing, we have to examine the change of the variable

TKSTATE or the transitions from other states to the PT state. This finding provides us a

better understanding of the current RMP specifications and change our ways to specify the

invariant for token passing.

2. The Perpetual Getting Problem

In the normal operation mode, ff there is no data loss, the Ordering Queues of all member

sites should be in the consistent state. Under this ideal condition, no site would get into GP

(Getting Packet) state. Only if a site is named as the next token site and its Ordering Queue

is not consistent, the site will transition into GP state. In our formal model, this non-ideal

situation is inherently built-in and data loss is simulated by the non-deterministic transition

of Ordering Queue state. We found that if the lost data packet can not be retransmitted by

the network through NACK mechanism, the site would be blocked in GP state and the

token would stop rotating, thus violating the reliable delivery requirement and resulting in

a reformation. Formal models shows that this is a potential problem and that this problem

can only be solved by guaranteeing that the lost data packet will be eventually retransmitted

by the NACK mechanism. This finding leads us to test the implementation under this

condition. The testing shows that the implementation does have correct behavior as

specified in this situation. A site in GP state will not get out of GP, even though the lost

data packet are reu'ansmitted. Since the implementation does not check the status of the

Ordering Queue while transiting into next state.

3. The Completeness of Recovery Specification

The fault recovery of RMP specifications is of critical importance, since whenever there is

an error or failure, the protocol switches into the recovery mode and tries to provide reliable

service in face of faults. Fault tolerant applications are, by their nature, very difficult to

develop and specify. Therefore, RMPs fault recovery process has undergone a very serious

35



Formal ModQIs of liMP

examination. The formal recovery model indicates several problems. First,the

specificationsforrecovery operationsinvolve a lotof differentconditions on the data

packets fields,and relationsbetween theseconditionsare not obvious. Consequently, the

fLrStrecovery model always run intodeadlock stateas the specificationsdoes not exhaust

allpossiblecombinations of these conditions.This problem is fedback to the protocol

designers and resultsin a more expanded and complete specifications of recovery

operations.For example, one condition isifthe information contained in the packet

matches the information storedin the currentsite.This is very general statement and

several fieldsin the packet may break thiscondition. The other conditions include

reformationlist/not,validfmvalidnew list.First,we noticethatthe informationina packet

must be correct,then we can examine ifitisa reformationlistor validlist.Second, since

thereare severalways to break these conditions,the testingon these transitionsshould

consider allpossiblecombinations of packets.These observationshelp toidentifyseveral

implementation problems in the testing and produce a expanded and complete

specificationsof recovery operations.

4. Minimal Fairness Conditions

After the formal models are refined into a deadlock state, we examine the system invariants

to verify if the model possess the desired properties. Under the arbitrary sequences of

events, most invariants do not hold without proper fairness conditions. Our goal is to

identifytheminimal fairnessconditionsforthoseinvariantstohold and then examine these

minimal conditions.For normal operationmodel, the minimal conditionsare the lostdata

packetsare eventuallyrctransmittcdand thetoken iseventuallypassed.We feelthatthisis

a reasonableconditionsfor the normal operationmodel. But for the recovery model, we

observed thatfor each recovery state,there is only one way to lead to successful

reformation.To guarantee,a successfulreformationeventuallyoccurs,allof conditionsin

each statewhich leadto successfulrecovery must be trueinfinitelyoften.This isa strong

36



Formal Models of RMP

condition. But since a recovery involves a synchronization and coordination among all

active members, we do not see any other ways to relieve these conditions. This finding

suggest us to take a careful testing for the recovery mode in WAN environment to check ff

these conditions can be reasonably satisfied in a real network environment.

4.2 Multiple-Site SPIN Model

4.2.1 The Need for Multiple-Site Model

In the Murphi formal models, we examine the protocol behavior of a single site under

arbitrary sequence of events. At this level of protocol abstraction, there is no concept of

packet sequence number, timestamp, Data Queue, Ordering Queue or NACK mechanism.

There is no explicit interaction between different members of the RMP processes and all

event-generating action parts are ignored. All events are generated by a network driver in

a non-deterministic manner, not by the ring member as part of the site's restx_nse action. In

the models, all actions that only affect other sites states are ignored. The Murphi model is

good for checking the completeness and consistency of the RMP specification related to

the state transitions. The verification analysis on this level of abstraction shows that the

protocol does preserve the required properties under the arbitrary sequence of events,

assuming that certain fairness properties are satisfied. A complete verification of the

protocol specifications requires us to consider interactions among different sites and all

events should be generated as part of member's specified response action instead of being

generated by the external random event generator.

Based on the above observations, we decided to take the advantage of SPIN tool's explicit

support of communication channels [HOLZ91]. We develop a SPIN formal model of RMP

which incorporates the interactions between token ring members and elaborate the

communication mechanisms between different sites. As we need to simulate the action

37



I

FormalModelsof RMP

parts of sending out data packets, ACK and NACK packets, we have to include the concept

of sequence number, timestamp, Data Queue and Ordering Queue. Therefore, the SPIN

model must have lower level simulation of the protocol operations and include some basic

underlying data structures. For example, in the Murphi models, we simply use a non-

deterministic algorithm to simulate the transition of a site's Ordering Queue between

CONSISTENT and INCONSISTENT state. In the SPIN models, whether a site's Ordering

Queue is consistent or not will be determined completely by examining the slots of the data

structure in the site's Ordering Queue. Since we have to maintain some data structures to

represent a site's state, this detailed model permits a closer comparison between the formal

models and the implementation.

4.2.2 Some Simplifications

Since RMP is a complicated protocol, it is neither necessary nor possible to use the SPIN

tool to simulate aLl detailed behaviors in the protocol implementation. We have to make

some simplifications for our model to abstract the main features of the protocol without

getting into too overwhelm in details. In our model, we explicitly make the following

simplifications:

• Fixed single data source: In the RMP specification, data packets can be sent to

the token ring by any ring members or by other non-member sources. Allowing

multiple data source will not introduce any operational complexity but simply

make the book-keeping task more complex and difficult;

• One ACK per data packet: For efficiency reason, the current RMP specification

and implementation support one ACK for multiple data packets, which is an exten-

sion of Chang's original token ring protocol [CHANS1]. But this expansion is

strictly for the efficiency reasons and does not involve any fundamental change to

the protocol operations. So in our model, we will keep the original one ack per data

packet policy. Since our data source continuously send out data packets, there will

38



I

FormalModelsof RMP

not be any NULL ACK packets in the normal operation model;

• Small periodic sequence number/timestamp: In the RMP specification, the

data sequence number is sourcespecificand could be any number determined by

the source. These sequence numbers are used to determine the relative order for

the data packets sent out by the same source. The timestamp is used to order all

data packets from differentsourcesand forms the base of virtualsynchrony. The

timestamp ismonotonically increasedby each ACK or NL packetsuntil(2^32 -1).

Itis then round back to zero and increasesagain.If we allow the timestarnpto

change in a largerange,themutual interactionbetween differentsiteswillcause a

stateexplosion.Since we have tokeep our data structuressimple and the number

of statevariablessmall,itisessentialto have a good algorithm to representthe

timestamp and the sequence number. From the above simplifications,we can use

the same number forthe data sequence number and the timestamp, sincethereis

only one data sourceand no NULL ACK packet.The criticalstepisthatwe use a

small periodicsequenceltimesmmp thatranges from 0 to (2"N-1) to simulate the

finitestatesin the Ordering Queue. Here we have to used the following factto

update and periodicallycleareach site'sOrdering Queue: whenever the token is

rotatedback to a site,the sitecan discardalldata packets priorto the lasttimes-

tamp sentout by thissiteand clearthose slotsfor lateruse;

•Three siteinteractionmodel: More members inthe ringwillincreasecomplex-

ityof the protocoloperations,but threemembers willrepresentalmost allpossible

combinations of eventsand statespossiblein the interaction.To keep our model

simple,we retaintothreesiteinteractionmodel. Actually,thereisno intrinsicdif-

ficultyin instantiatingmore RMP processesin SPIN, sinceprocessescan be cre-

ated dynamically. But more processes willrequire longer Ordering Queue and

more complex book-keeping;

• Strictflow control:In the protocoldesign,flow controlisa very complicated

39



Formal Models of RMP

and important issue,especiallywhen NACK policyisimplemented. A good flow

controlalgorithm should allow for the fastestdata transmissionwithout unneces-

sary duplicatedam retransmission.To avoid unnecessary complicationin our for-

mal model, we use a strictflow controlmechanism thatthe data source willnot

send the next data packet until it receives the acknowledgment for the last sent

packet. To construct a formal model with the realistic time-out/retransmission

algorithm involves much more nontrivial work.

Based on the above simplification, the formal RMP SPIN models are built in an

incremental fashion. First, a model with no data packet loss is constructed, where the dam

source initially sends out a data packet and each site reacts as specified in the protocol

specification. This model mainly consist two basic processes: a multieaster process that

plays the role of network multicasting network and a RMP process that generate events and

responds to the events on its own event queue. The data source will not send the next packet

until it receives the acknowledgment for the last packet. All multicast packets (DATA,

ACK) are multicast to all members through a multicaster process. Unicast packet are sent

directly to the destination data queues. We use arrays of size (2*N) to record the data

packets and ordering queue slots. Different from the R_MP implementation, all data packets

will stay in the data queue and will never be actually placed in the ordering queue, since we

have the same sequence/timestamp. Each process loops infinitely on its event queue: get

next event from the event queue, take actions and transit as specified in the specifications.

Whenever there is a system-wide time-out, it is assumed that the last packets are lost by all

members and will be retransmitted. After this first model is constructed, a more detailed

model with data lose and NACK and retransmission mechanism is constructed.

4.2.3 Results

Even from the simplest version of SPIN model of RMP, we can learn something beyond

40



Formal Models of RMP

our first intuition. Since all packets in the fhst model are transmitted reliably, we naively

assumed that each site would always have their Ordering Queue in the CONSISTENT state

and will never get into INCONSISTENT state. Consequently, all sites would never get into

GP state -- a state that was named as the next token site, but its Ordering Queue was in

inconsistent state such that it can not accept the token immediately. But the f'trst run of the

model shows that even in this reliable delivery case, it is still possible to get into GP state

temporarily. Due to the response speed differences among different sites, the data packets

may be delivered out of order. In the case where the ACK packet is delivered ahead of the

corresponding data packet, the site may be temporarily in the GP state. This is the

advantage of the automatic verification tool: even for a simple model, it can exhibit you

some non-trivial behaviors.

The next level of the model involves the simulation of network behavior. Since RMP is

built on top of UDP, packets may be lost, duplicated, or delivered out of order. For the

current RMP specifications, the duplicated packets should not cause any specific problems.

The mis-ordered delivery of data packets is simulated automatically by the SPIN system by

considering all possible different rates among different processes. So the main task is how

to simulate data loss and the retransmission mechanism. Due to the data loss, the model

may easily get into deadlock state without careful consideration. If the packet is missed by

all members in the ring, the data source will be waiting for acknowledgment for the data

packet while the current token site, which is responsible for generating the

acknowledgment packet for the lost data packet, is waiting for the data packet.to arrive. In

the implementation, this problem is solved by setting a alarm for the token site to pass the

token within certain time limit. If no data packet arrives in this limit, the token site will pass

the token by a NULL ACK packeL In our case, we use the global time-out feature in SPIN

to retransmit the lost packet: whenever there is a system-wide time-out and the system is in

s deadlock state, the last (lost) packet is re-multicasted to all members in the ring.

41



FormalModelsof RMP

As in the Murphi model, we first run the model in a simulation mode. The simulation runs

can be useful in quickly debugging new designs, but the simulation does not prove that the

system is error free. In the simuiation mode, if there is any error checked by the assert

statement or system deadlock, one can easily debug the code. All visited states arc not

stored, but interpret and execute statements on the fly. Generally, we use this mode under

two cases. In the first case, if the SPIN model is newly consu'ucted, the simulation helps us

quickly debug the model. In the second case, the model is too complicated to take an

exhaustive search on all possible states, a long time simulation may help to gain coverage

in trade of time.

After the formal model is established in a bug-free state, a verification code is generated to

perform an exhaustive validation. The first type of validation the SPIN model can perform

is the reachability analysis. This includes checking the state properties and system

invariants, such as the assertion violation, and detecting the error assertions. All of these

tasks can be easily done by examining all possible states. The second type of analysis is the

detection of deadlock. To distinguish the normal termination from the deadlock, the

acceptable end states arc marked by end labels. The third type of analysis is bad cycles

detection, including non-progress cycles and livelocks. Some systems may not have

deadlock state, but they may loop infinitely without making "real progress". Here "real

progress" means passing some states with desired properties. You can place progress labels

in the SPIN model to indicate some desired progress states. For example, in the RMP

normal operation, we want the token to be rotated around all members and all sites will be

in token site state (TS) infinitely often. We can mark the statement with its state in TS as

the progress state. If the token can be implicitly passed without explicitly transiting into TS

state, the situation will be more complicated. Similarly, to formalize the opposite of the

non-progress cycles that something bad can not happen infinitely often, one uses the accept

labels. The last type of validation analysis is through temporal logic claims. In PROMELA,

42



FormalModelsof RMP

all temporal claims are expressed as never clauses, e.g. in a way that something as specified

should never happen in the protocol It is relatively hard to express some complicated

temporal claims in never clauses, but the new release of SPIN has an ad_tional option to

translate the linear temporal logic specifications into never clauses.

If an error is found, you can run the verifier again with -t flag to follow the full error trail.

SPIN has several command options to change the default settings of the state space search,

including maximum search depth, and hash table entries. An important feature of SPIN is

that it provides feasible analysis in case of state explosion. A order analysis shows that most

computers withlt-32 MB memory will run out of space for a system about 10AS states

[HOLZ91]. For models with multiple process interaction, this limit can easily be reached.

In this case, an exhaustive search is impossible. Besides random simulation, SPIN offers a

bit-state supertrace algorithm to perform best possible partial-search. Some analysis shows

that this algorithm is by far the best in the case of impossible exhaustive search.

Up to now, most of our analysis are on the deadlock and state assertion. For the interaction

model, because the events are generated as part of a site's action, it is far from trivial to get

the model into a deadlock-free state. Because of the interaction, the current version of

normal operation model has already exceeded the limit of our machine memory. Therefore

it is not possible to perform exhaustive search, and the verification of temporal logic

specification becomes incomplete. But since we already have reasonable confidence over

the transitions rules in the RMP specifications by the Murphi models, the SPIN model can

mainly serve to check the completeness and consistency of action part.

4.2.4 Future Directions

We have successful constructed a SPIN model for normal RMP operations and carried out

various validation analysis on the model. We did not find any major problems, but the

43



I

Formal Models of RMP

model does help us to appreciate the complication of the protocol. For the RMP recovery

operation, we still face some difficulty in efficiently simulated various alarms and time-out

mechanisms. In RMP, alarms play an important role in rewansmission. We have to f'md a

way to simulate these alarms and retransmission algorithms effectively before we can

further improve our models. We believe that SPIN has enough power to perform a good

validation analysis on RMP.

44



Test Generation

Chapter 5 Test Generation

5.1 Conformance Testing and Testing Strategy

The development of RMP follows our iterative model: a full interaction between

development team and the verification team. Upon the first design finished, the

development team moved forward to implement the protocol design in C++ and the

verification team starts working on the formal models based on the specifications. Any

potential problems found in the verification process are fedback to the design and

development team and may result in the modification of the specifications and the

implementation. Upon the completion of the first RMP implementation, the conformance

testing of the implementation becomes the main task for the verification team. A white-box

testing would be good ff there is enough resources and time. Considering the large size of

our implementation (> 2,2000 lines of code) and the group size of our team (2 for design

and implementation, 2 for testing and verification), we resort to the code review and black-

box testing. Code review is good to find some apparent and developer's habitual coding

errors, and black-box testing will serve the conformance testing. Since black-box testing is

based on the testing of all required functions, it is also known as functional testing.

Since the high fidelity between the specifications, the formal models, and the

implementation is our goal, we will perform the minimal functional-testing for the

implementation as our first step. All operational transitions specified in the specifications

are under testing to make sure that the implementation has the desired behavior. Since RMP

45



Test Generation

is a distributed communication protocol, we have to find a way to do testing for this kind

of distributed system. Fortunately, the implementators of RMP has designed and coded the

implementation of RMP with testability in mind and has built in a lot of conditional

compiling codes to facilitatethe testing.These include some operationlikedumping the

contentsof Ordering Queue and Data Queue, assertionsabout the currentstatevariables.

Actually,based on theseadditionalcode,a small testscriptlanguage iscreatedtofacilitate

the testscriptgeneration.The conformance testingof RMP is based on thistestscript

framework [MORR95].

5.2 Test generation

Since we adopt a functional testing strategy, the test suite generated has to cover all

specified transitions in the specifications. Our formal models perform verification by

examining all states and along all possible paths. That means, all possible combinations of

the transition paths and the all states are already explored by the verification system. We

may simply use the explored states and paths as our testing suite. Along this line, all

required test cases for the functional testing are already explored by the formal models, the

problem is how to extract this information out from the formal models and the verification

system.

Under our testscript framework, tests are executed in a single RMP process. Instead of

using explicit network communication, the testscript framework allows us to input any data

packets and insert some failure conditions. This approach is very similar to the single site

Murphi model: we are examining a single site's behavior again the specifications under all

possible events. Therefore a test suite is generated based on the Murphi models.

Our fast intent was to modify the Murphi system to output our test suite d/rectly with

certain option flags. We examined the class hierarchy in the Murphi source code and

46



Test Generation

intended to add some command flags to generate test suite. The Murphi system consists of

a complex class hierarchy and the work can not be done through the modification of a single

class. At the same time, we observed that the Murphi system supports a verbose output

option, by which the system produces verbose every step as it progresses. Hence we

decided that instead of changing the Murphi system directly, we would run the verifier in

verbose mode and direct the output into a file. We build a tool to extract the test suite out

from this f'de. To extract the explored paths from the Murphi verifier's output, we use a text

extraction language called Perl. Perl is a powerful language for text extraction and report

writing. We reconstruct all explored paths and produce a test suite in our desired format.

This is a more efficient way to produce test suite.

We wrote a program to extract the test cases from the Murphi output. First, two arrays are

constructed to establish the correspondence between the Murphi state number and the

values of state variables. As Murphi performs the search on all possible states, it

increasingly assigns an unique integer to any new state. Secondly, the entire searching tree

is reconstructed based on the verbose output of Murphi verification system. This produces

a nonuniform tree: some states may have only one direct child, while others states may have

several children. The entire tree structure is stored in an array of lists. Each array element

contains a list of states which are direct descendents of the current state. Finally, all

explored paths are outputted as test cases by left-most search on the state tree. As tests are

generated, the visited paths are removed from the state tree. This process continues until

the state tree becomes empty. For the test output, we follow the SCR requirement table

format and specify the test paths as the current state, the event, the conditions on state

variables and the next state. This provides a direct input to Jeff's automatic test scripts

generator tool [MORR95].

For the normal operationmodel, we startfrom the Not In Ring or Not_Token_Site state

47



I

Test Generation

and examines all possible transitions according to the specifications. 291 different paths are

generated for normal operations only. In Appendix II, we list the test suite generated this

tool for the normal operation model without member change extension. It has total of 63

paths. Similar method is applied to recovery model and 250 test cases are generated.

5.3 Discussion

Up to now, a complete transition cover testing has been performed on the RMP

implementation. But this test suite does not consider the difference between different state

variable conditions. A complete functional testing should consider the state mode along

with the different values of other state variables. Therefore, the transition cover testing has

fewer test cases than the test cases generated by the Murphi. In our formal models, we

separate the normal operation model from the recovery operation model. If we merge them

together, the entire test set will significantly increase, since the test cases grow

mnltiplicatively, instead of additively. The current testing on transition mainly concerns

about the new state by verifying an assertion on the state mode, no other variables are being

verified. Because testing is performed on a single RMP process, all actions to other sites

are left untested. To include the testing on other variables as well as actions, more test cases

need to be executed and the testscript framework need to be modified to support more

assertions.

Besides providing the full functional coverage test cases, the formal model can also be used

to explore the implementation behavior of RMP by generating the test paths under

particular sequences of events. For example, if the behavior of the system under a certain

sequences of events is suspected, we can generate the testing paths using the formal models

to guide the testing of the implementation under this special sequence.

48



I

Conclusion

Chapter 6 Conclusion

Based on the formal specifications of RMP, we have constructed formal models of RMP at

two different levels and perform validation analysis on the protocol. The automatic

verification systems provide the completeness and consistency check on the protocol

specifications. This analysis helps us to identify some minor specification problems and

provide guidance for conformance testing. Through formal analysis, we promote our

understanding of the protocol and increase confidence on the protocol design. During the

verification process, we followed an interactive and iterative development approach which

helps enhance software tractability and maintain the fidelity between thesi_ecifications,

formal models and the implementation. The formal analysis results are directly related to

the implementation through our test suite generation tool.

During the process of formal analysis of RMP, we learned that the critical step for this

approach is to construct the formal models at an appropriate level of abstraction. The

abstraction level should be suitable for the formal specification support of the underlying

verification systems. At the same time, the coordination and corporation between the

implementation team and verification team is another important factor to this approach. In

a large software development environment, this factor will become even severe. At this

point, we can not say that we have formally verified RMP. By incorporating the formal

methods into our development cycles, we have increased our confidence on the design and

the quality of the implementation. We believe that more detailed works can be done and

closer comparison with implementation can be achieved.

49



Bibliography

Bibliography

[BEIZ95] B. Beizer, Black-Box Testing, John Wiley, 1995

[BERT94] A. Bertolino, M. Man'e, Automatic Generation of Path Covers Based on Control

Flow Analysis of Computer Program, IEEE Transactions on Software Engineering, Vol.

20, No. 12, 885-899, 1994

[BURC90] J. Butch, E. Clarke, K. McMillan et al, Symbolic Model Checking: 220 States

and Beyond, In 5th Annual Symposium on Logic in Computer Science, 428-439, 1990

[CHAN84] L Chang, N. Maxemchuk, "Reliable broadcast protocols", ACM Transactions

on Computer Systems, Vol. 2, pp251-273, August, 1984

[DAUP93] M. Dauphin, G. Fonade, R. Reed, SPECS: Making Formal Techniques Usable,
IEEE Software, November, 55-57, 1993

[DREX92] D. Dill, A. Drexler, A. Hu, C. Yang, Protocol Verification as a Hardware

Design Aid, In IEEE International Conference on Computer Design: VI_I in Computers

and Processors, 552-525, WEE COmputer Society, 1992

[GANN94] J. Gannon, J. Purtilo, M. Zelkowitz, Software Specification, A Comparison of

Formal Methods, Ablex, 1994

HEN80] K. Heninger, Specifying Software Requirement for Complex Systems: New

Techniques and Their Applications, IEEE Transactions on Software Engineering, Vol. 6,

2-13, January, 1980

[HOLZ91] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall,
1991

[HOLZ94] G. J. Holzmarm, Basic Spin Manual, AT&T Bell Laboratories, Murray Hill,

New Jersey, 1994

[HOLZ95] G. J. Holzmann, What's new in SPIN Version 2.0, AT&T Bell Laboratories,

New Jersey 07974, 1995

[LENO92] D. Lenoski, J. Laudon, K. Gharachorloo et al, The Stanford DASH

Multiprocessor, Computer Systems Laboratory, Stanford University, 1992

[MELT93] R. Melton, D. Dill, C. Norris, Murphi Annotated Reference Manual, Version

2.6, 1993

[MONT94] T. Montgomery, Design, Implementation, and Verification of the Reliable

50



I

Bibliography

Muldcast Protocol, MS Thesis, Dept. of Electrical and Computer Engineering, West

Virginia University, 1994

[MORR95] Jeffrey L. Morrison, Methods and Tools used for the Implementation

Verification of Reliable Multicast Protocol, NASA-IVV-95-(X)4, WVU-SRL-95-004, 1995

[RAJA95] S. Rajah, N. Shankar, and K. Srivas, An integration of Model-Checking with

Automated Proof Checking, Spinger Verlag Lecture Notes in Computer Science, Vol. 939,

pp. 84-97, 1995

[RUSH93] J. Rushby, N. Shankar, PVS: A Prototype Verification System. In 1 lth
International Conference on Automated Deduction, 748-752, 1992

[STAS95] M. Staskauskas, Tales from the Front: Industrial Experience with Formal

VAlidation, First SPIN Workshop, Qubeck, Montreal, Canada, 1995

[WHEA95] B. Wheaten, T. Montgomery, J. Callahan, Reliable Multicast Protocol

Specifications, RMP beta release

[YODA92] V. Yodaiken, K. Ramamritham, Verification of a Reliable Net Protocol, In

Formal Techniques in Real-Time and Fault-Tolerant Systems, 193-215, January, 1992

51



,eOf_Lx

I. Part of RMP Specifications

Appendix

Events in the RMP specification are one of several things. (1) Arriving packets, (2)
Expired alarms, (3) User events, (4) Exceptional conditions. The specification event types
arc"

Event Type
Data
ACK
NACK

Conf

NMD
NMA
NL

LCR
RecStart
Rec Vote

RecACKNL
RecAbort
Failure
TPA
CTPA
RTA
MandLv

CommitNL

JoinReq

Description
Data Packet
ACK Packet
ACK Packet
Confirm Packet
Non-Member Data Packet
Non-Member ACK Packet
New List Packet

List Change Request Packet
Recovery Start Packet
Recovery Vote Packet
Recovery ACK New List Packet
Recovery Abort Packet
Retransmission timeout on packet
Token Pass Alarm

Confirm Token Pass Alarm
Random Tlmeout Alarm

Mandatory Leave Alarm
Commit New List Notification

Application request to join group

S_t_:

TS
NTS

GP
171-
JR
LR
NIP.
SR

CNL
SV
ACKNL
AR

Token Site State
Not Token Site State

Getting Packets State
Passing Token State
Joining Ring State

Leaving Ring State

Not In Ring State
Start Recovery State
Created New List State
Sent Vote State
ACK New List State

Abort Recovery State

52



I

_ndbc

Token Site State Table:

Event Condition(s) State

Data Token Passed PT

Data [Token Passed TS

NMD Token Passed PT

NMD !Token Passed

LCR Token Passed PT

LCR Token Passed TS

ACK Named Token TS

NL Named Token TS

Failure (none) SR

RecSmrt (none) SV

TPA (none) PT

CTPA (none) TS

Passing Token State Table:

Action(s)

place packet in DataQ

Pass-Token

place packet in DataQ
Pass-Token

place packet in DataQ

Pass-Token

TS place packet in DataQ
Pass-Token

place packet in DataQ
Pass-Token

place packet in DataQ
Pass-Token

Unicast Confirm to

Site Source

Unicast Confirm to

Site Source

Multicast RecSt_

Unicast RccVote to

Reform Site

Generate Null ACK

Muhicast Null ACK

Unicast Confirm to

lastToken Site

Event Condition(s) State
Data (none) PT

NMD (none) PT

LCR (none) PT

NL !named Token Site NTS

NL named Token Site PT

OrderingQ consistent

Token passed
NL named Token Site TS

OrdcringQ consistent

Action(s)

place packet in DataQ

Update-Ord   
place packet in DataQ

Update-OrderingQ

place packet in DataQ

Update-OrderingQ
Add NL to _gQ

U  hte-Or msQ
Add NL to OrderingQ

Updam-Ordem 
Pass-Token

Add NL to OrdcringQ

Update-Orderin 

53



NL

ACK

ACK

ACK

ACK

Conf

Failure

RecStart

!Token passed
named Token Site GP

!OrderingQ consistent
!named Token Site NTS

named Token Site PT

OrderingQ consistent

Token passed
named Token Site TS

OrdcringQ consistent

!Token passed
named Token Site GP

!OrdcringQ consistent

Timestamp >= NTS

Last token pass

Timestamp

(none) SR

(none) SV

Not Token Site State Table

Appendix

Event

Data

NMD

LCR

NIL

NL

NL

Pass-Token

Add NL to OrderingQ

Update-Orderin_Q
Add ACK toOrdcringQ

Updam-OrderingQ
Add ACK to OrdcringQ

Update-OrderingQ
Pass-Token

Add ACK to OrderingQ

Update-Ord_rin_
ass-Token

Add ACK to OrderingQ

Update-OrderingQ

NL

ACK

ACK

ACK

Condition(s)

(none)

(none)

none)

!named Token Site

named Token Site

OrdcringQ consistent

Token passed
named Token Site TS

OrdcringQ consistent

!Token passed
named Token Site GP

Update-OrderingQ

Multicast RecStart

Unicast RccVotc to

Reform Site

State

NTS

NTS

NTS

NTS

PT

Action(s)

place packet in DataQ

Update-Ord=ingQ
place packet in DataQ

Update-OrderingQ
place packet in DataQ

Update-OrderingQ
Add NL to OrderingQ

Update-OrderingQ
Add NL to OrderingQ

Update-Or_ringQ
Pass-Token

Add NL to OrdcringQ

Up_m-OrderingQ
Pass-Token

Add NL to OrderingQ

!OrderingQ consistent
[named Token Site NTS

named Token Site PT

OrderingQ consistem

Token passed
named Token Site TS

OrderingQ consistent

Update-OrderingQ
Add ACK to OrdcringQ

Update-Ord_gQ
Add ACK to OrderingQ

Update-OrderingQ
Pass-Token

Add ACK to Ol'dcringQ

Update-OrdcringQ

54



!

!Token passed
ACK named Token Site GP

!OrderingQ consistent
Failure (none) SR
RccStan (none) SV

CommitNL NL does not contain LR

Getting Packets State Table

Event Condition(s) State Action(s)
Data OrdcringQ consistent PT

Token passed

Data OrdcringQ consistent TS
!Token passed

Data !OrdcringQ consistentGP

NMD OrdcringQ consistent PT
Token passed

NMD OrdcringQ consistent TS
!Token passed

NMD !OrdcringQ consistentGP

LCR (none) GP

ACK OrderingQ consistent PT

Token passed

ACK OrderingQ consistent TS

!Token passed

ACK !OrderingQ consistentGP

NL OrdcringQ consistent PT
Token passed

NL OrderingQ consistent TS
!Token passed

NL !OrdcringQ consistentGP

55

Pass-Token

Add ACK to OrdgringQ

Update-OrderingQ
Muiticast RecStart

Unicast RecVote to
Reform Site

Schedule MandLv
site

place packet in DataQ

Opdate-OrdcringQ
Pass-Token

place packet in DataQ

Update-OrdcringQ
Pass-Token

placepacketinDataQ
Update-OrdcringQ
place packet in DataQ
Update-OrderingQ
Pass-Token

placepacketinDataQ
Update-OrdcringQ
Pass-Token

placepacketinDataQ

Update-OrdcringQ
place packet in DataQ
Update-OrdcringQ
Add ACK to OrderingQ

Update-OrderingQ
Pass-Token

Add ACK to OrdvringQ

Update-OrderingQ
Pass-Token

Add ACK to OrdcringQ

Update-OrderingQ
Add NL to OrderingQ

Up te-Or ringQ
Pass-Token

Add NL to OrderingQ

Update-OrderingQ
Pass-Token

Add NL to OrdcringQ

Update-OrdcringQ



,aO_nd_¢

Failure (none) SR

Rex:Start (none) SV

Multicast RecStart

Unicast RecVote to

Reform Site

II. Test Suite Generated for RMP Normal Operations

Path

NTS

NTS

I: I-> 2->3->8

@ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

@ ACK when ( CSI ^ TKUP ^ ACK ) --> NTS

Path 2:1 -> 2 -> 4 -> 9 -> 13 -> 36

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> NTS

NTS @ DATA when ( INCSI ^ TKUP A DATA ) --> NTS

Path 3:1 -> 2 -> 5 -> 10 -> 14 -> 37

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKUP ^ ACK ) --> TS

TS @ TPA when ( CSI A TKUP ^ TPA ) --> PT

Path 4:1 -> 2 -> 5 -> 10 -> 15 -> 38

NTS @ DATA when ( CSI A TKUP A DATA ) --> NTS

NTS @ ACK when ( CSI A TKUP A ACK ) --> "IS

TS @ CTPA when ( CSI ^ TKUP A CTPA ) --> "IS

Path 5:1 -> 2 -> 5 -> 10 -> 16

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TIG_rP ^ ACK ) --> TS

TS @ DATA when ( CSI a TKUP ^ DATA )

Path 6:1 -> 2 -> 5 -> 10 -> 17

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKUP ^ ACK ) --> TS

TS @ DATA when ( CSI a TKP a DATA )

Path 7:1 -> 2 -> 5 -> I0 -> 18 -> 41 -> 47 -> 62

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI A TKUP ^ ACK ) --> 'IS

TS @ ACK when ( CSI ^ TICUP ^ ACK ) --> TS

TS @ TPA when ( CSI ^ TKUP ^ TPA ) --> PT

Path 8:1 -> 2 -> 5 -> 10 -> 18 -> 41 -> 48 -> 63

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TIGJP ^ ACK ) --> TS

56



Appe_ix

"IS @ ACK when ( CSI ^ TKUP ^ ACK ) --> 'IS

TS @ CTPA when ( CSI ^ TKUP ^ CTPA ) --> TS

Path 9:1 -> 2 -> 5 -> 10 -> 18 -> 41 -> 49

NTS @ DATA when ( CSI ^ TKUP A DATA ) --> NTS

NTS @ ACK when ( CSI a TKUP ^ ACK ) --> TS

'IS @ ACK when ( CSI ^ TKUP ^ ACK ) --> 'IS

TS @ DATA when ( CSI A TKUP A DATA )

Path I0:1 -> 2 -> 5 -> I0 -> 18 -> 41 -> 50

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI a TKUP ^ ACK ) --> TS

TS @ ACK when ( CSI ^ TKUP ^ ACK ) --> TS

TS @ DATA when ( CSI ^ TKP ^ DATA )

Path 11:1 -> 2-> 5-> 1O-> 19

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKUP ^ ACK ) --> TS

TS @ ACK when ( CSI ^ TKDP A ACK )

Path 12:1 -> 2 -> 6 -> 11 -> 20 -> 42 -> 51 -> 66

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ CFM when ( CSI ^ TKUP ^ CFM ) --> NTS

NTS @ DATA when ( CSI a TKUP ^ DATA ) --> NTS

Path 13:1 -> 2 -> 6 -> 11 -> 21

NTS @ DATA when ( CSI a TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP a ACK ) --> PT

PT @ DATA when ( CSI a TKUP a DATA )

Path 14:1 -> 2 -> 6 -> 11 -> 22

NTS @ DATA when (CSI ^ TIG.IP^ DATA )--> NTS

NTS @ ACK when (CSI ^ TKP ^ ACK ) -->PT

PT @ ACK when (CSI ^ TKUP ^ ACK )

Path 15:1 -> 2 -> 6 -> 11 -> 23

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( INCSI ^ TKUP ^ ACK )

Path 16:1 -> 2 -> 6 -> 11 -> 24

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when (CSI ^ TKUP ^ ACK )

57



A;gmadix

Path 17:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 52

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ CFM when ( CSI ^ TKP ^ CFM )

Path 18:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 53 -> 67

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ DATA when ( CSI ^ TKP ^ DATA ) --> PT

Path 19:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 54

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

P'I' @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( CSI ^ TKP ^ ACK )

Path 20:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 55

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( INCSI ^ TKP ^ ACK )

Path 21:1 -> 2 -> 6 -> 11 -> 25 -> 43 -> 56

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TI_ ^ ACK ) --> PT

PT @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( INCSI ^ TKP ^ ACK )

Path 22:1 -> 2 -> 6 -> 11 -> 26

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ ACK when ( INCSI ^ TKUP ^ ACK )

Path 23:1 -> 2 -> 7 -> 12 -> 27 -> 44

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ DATA when ( INCSI ^ TKUP ^ DATA ) --> GP

Path 24:1 -> 2 -> 7 -> 12 -> 28

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ DATA when ( CSI ^ TKUP ^ DATA )

Path 25:1 -> 2 -> 7 -> 12 -> 29

58



A0pondix

NT$ @ DATA when ( CSI ^ _ A DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ DATA when ( CSI ^ TKP ^ DATA )

Path 26:1 -> 2 -> 7 -> 12 -> 30

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ ACK when ( CSI ^ TKUP ^ ACK )

Path 27:1 -> 2 -> 7 -> 12 -> 31 -> 45 -> 57 -> 68

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ ACK when ( CSI ^ TKP ^ ACK ) --> PT

PT @ CFM when ( CSI ^ TKUP ^ CFM ) --> NTS

Path 28:1 -> 2 -> 7 -> 12 -> 31 -> 45 -> 58

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ ACK when ( CSI ^ TKP A ACK ) --> PT

PT @ DATA when ( CSI ^ TKUP ^ DATA )

Path 29:1 -> 2 -> 7 -> 12 -> 32 -> 46 -> 59 -> 69

NTS @ DATA when ( CSI A TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TIG.YP ^ ACK ) --> GP

GP @ ACK when ( INCSI A TKUP A ACK ) --> GP

GP @ DATA when ( INCSI ^ TKUP ^ DATA ) --> GP

Path 30:1 -> 2 -> 7 -> 12 -> 32 -> 46 -> 60

NTS @ DATA when ( CSI ^ "IXUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ DATA when ( CSI ^ TKUP ^ DATA )

Path 31:1 -> 2 -> 7 -> 12 -> 32 -> 46 -> 61

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI A TKUP ^ ACK ) --> GP

GP @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ DATA when ( CSI ^ TKP ^ DATA )

Path 32:1 -> 2 -> 7 -> 12 -> 33

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

NTS @ ACK when ( INCSI ^ TKUP ^ ACK ) --> GP

GP @ ACK when ( CSI ^ TKUP ^ ACK )

Path 33:1 -> 2 -> 7 -> 12 -> 34

NTS @ DATA when ( CSI ^ TKUP ^ DATA ) --> NTS

59



Appe_

NTS @ ACK when ( INCSI ^ _ ^ ACK ) --> GP

GP @ ACK when ( CSI ^ TKP ^ ACK )

Path 34:1 -> 2 -> 7 -> 12 -> 35

NTS @ DATA when (CSI ^ TKUP ^ DATA )--> NTS

NTS @ ACK when (INCSI a TKUP a ACK )--> GP

GP @ ACK when ( INCSI ^ TKUP ^ ACK )

6O



APPROVAL OF EXAMINING COMMITTEE

This problem report for the Master of Science degree

by Yunqing Wu has been approved for

the Department of Statistics and Computer Science by

Jack Callahan, Chair

Murali Sitaraman, Ph.D.

Raghu Karinthi, Ph.D. Date




